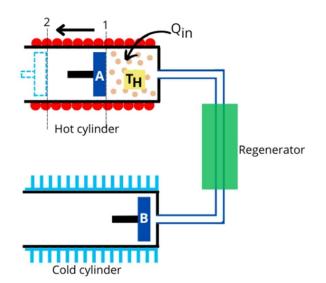
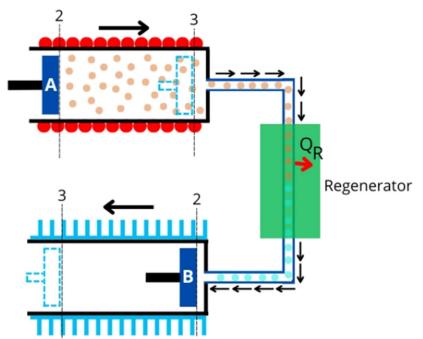

### **Sterling Cycle**




The ideal Stirling cycle consists of the following 4 processes.

- Process 1-2:- Isothermal heat addition/Isothermal expansion
- Process 2-3:- Constant volume heat rejection
- Process 3-4:- Isothermal heat rejection/Isothermal compression
- Process 4-1:- Constant volume heat addition

In the above figure, the  $Q_R$  indicates the heat transfer because of the regeneration.


The Stirling cycle consists of two isothermal and two isochoric processes. Each of the processes is described below:-

# 1] Isothermal heat addition:-

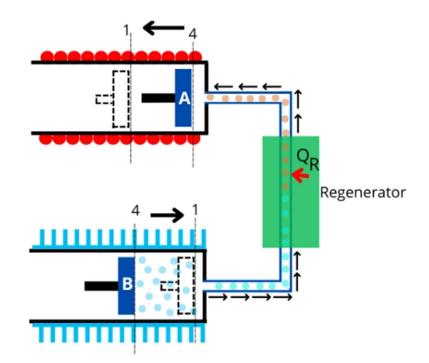


The unit shown in the above figure will help to understand the different processes that occur in the Stirling cycle. It consists of a hot cylinder at temperature  $T_H$ , a cold cylinder at temperature  $T_L$ , and a regenerator.

The process shown in the above figure indicates isothermal heat addition. In this process, the air present in a hot cylinder is heated by an external heat source. During this heat addition, piston-A moves toward the left to cause isothermal expansion of air.



## 2] Constant volume heat removal:-

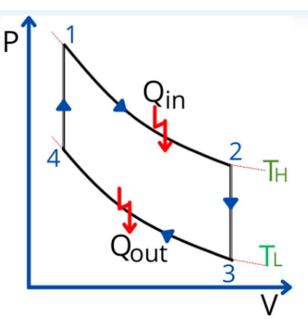

During this process, the air in the hot cylinder is transferred to the cold cylinder through the regenerator. For this purpose, piston-A moves to the right while piston-B moves to the left.

In the regenerator, air rejects the heat to change its temperature from  $T_H$  to  $T_L$ , and then it enters into the cold cylinder.

# Regenerator

In this process, the air inside the cold cylinder undergoes isothermal compression with rejecting heat to the external sink. During this process, the piston-B moves inward.

## 4] Constant volume heat addition:-




During this process, the air inside the cold cylinder is transferred to the hot cylinder through the regenerator.

## 3] Isothermal heat rejection/Isothermal compression:-

For this purpose, piston-B moves inward while piston-A moves outward. While passing through the regenerator, the air takes heat  $Q_R$  from the regenerator to raise its temperature from  $T_L$  to  $T_H$ .

Stirling cycle efficiency derivation:



The amount of heat added during the process 1-2 is given by,

$$Q_{\mathrm{in}}=Q_{12}=P_1v_1\ln\!\left(rac{v_2}{v_1}
ight)$$

$$egin{aligned} Q_{ ext{in}} &= RT_1 \ln igg(rac{v_2}{v_1}igg) \cdots [\because P_1 v_1 = RT_1] \ Q_{ ext{in}} &= RT_H \ln igg(rac{v_2}{v_1}igg) \cdots [\because T_1 = T_H] \end{aligned}$$

The amount of heat rejected during isothermal process 3-4 is given by,

$$egin{aligned} Q_{ ext{out}} &= Q_{34} = P_3 v_3 \ln \left( rac{v_4}{v_3} 
ight) \ Q_{ ext{out}} &= R T_3 \ln \left( rac{v_4}{v_3} 
ight) \cdots [\because P_3 v_3 = R T_3] \ Q_{ ext{out}} &= R T_L \ln \left( rac{v_4}{v_3} 
ight) \cdots [\because T_3 = T_L] \end{aligned}$$

The net work done by the cycle is given by,

$$W_{
m net} = Q_{
m net}$$

$$W_{
m net} = Q_{
m in} + Q_{
m out}$$

$$egin{aligned} W_{ ext{net}} &= RT_H \lnigg(rac{v_2}{v_1}igg) + RT_L \lnigg(rac{v_4}{v_3}igg) \ W_{ ext{net}} &= RT_H \lnigg(rac{v_2}{v_1}igg) - RT_L \lnigg(rac{v_3}{v_4}igg) \end{aligned}$$

Now the thermal efficiency of the Stirling cycle is given by,

$$\eta_{
m th} = rac{W_{
m net}}{Q_{
m in}}$$
 $\eta_{
m th} = rac{RT_H \ln igg(rac{v_2}{v_1}igg) - RT_L \ln igg(rac{v_3}{v_4}igg)}{RT_H \ln igg(rac{v_2}{v_1}igg)}$ 

From above figure  $\mathbf{v}_3 {=} \mathbf{v}_2$  and  $\mathbf{v}_4 {=} \mathbf{v}_1$ 

$$\therefore \eta_{ ext{th}} = rac{RT_H \ln \left( rac{v_2}{v_1} 
ight) - RT_L \ln \left( rac{v_2}{v_1} 
ight)}{RT_H \ln \left( rac{v_2}{v_1} 
ight)}$$
 $\eta_{ ext{th}} = rac{T_H - T_L}{T_H}$ 

$$\eta_{
m th} = 1 ext{-} rac{T_L}{T_H}$$

This is the equation to find the efficiency of the Stirling cycle operating between temperature  $T_{\rm H}$  and  $T_{\rm L}.$ 

The above equation is similar to the equation of Carnot cycle efficiency