PART A

Derivation of general three dimensional conduction equations in Cartesian coordinate
Generally the heat conduction problem consists of finding the temperature at any time and at
any point within a specified solid that has been heated to a known initial temperature distribution

and whose surface has been subjected to a known set of boundary conditions.

Consider a solid as shown in Fig 2-4 with heat conducting in and out of a unit volume in all

three coordinate directions x, y and z

Making energy balance (1)
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Fig 2-4 : Three dimensional heat conduction in Cartesian coordina
Substituting all the values in equations [1] above general three dimensional heat conduction
equation becomes

or oT
—kdydz — — 9L _ aT
'y Em kdxdz % kdxdya- + qdxdydz

= ar )
[ ox ax (k B_}ﬂdedz
ar i
3y ay
[ 3T a aT)d ]d.ldy + pcdxdydz —1

Rearranging and simplifying the above equation

) ( GT) d(, 0T\ a(, ar ad
— | k— |+ —| k— |+ —| k2= - l
ox\ ox) ay 3y)+3z(k az)+q =P
If thermal conductivity k is constant, the above equation becomes

T T T ¢  pCaT

ax® ay2+?+k k ot

’T 3’r a’r g 10T
o Ty ek ad U 2]

In the above equation the quantity a is known as thermal diffusivity of the material. Rate of heat
diffusion through the material is faster if a is higher. The term pc is known as thermal heat capacity.
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Higher value of a may be either due to higher value of thermal conductivity or lower value of
thermal heat capacity. Lower value of thermal heat capacity means the energy moving through the
material. would be absorbed to a lesser degree and used to raise the temperature of the material.
This means more energy is available for further transfer

Discussion on 3-D conduction in cylindrical and spherical coordinate systems (No
derivation).

Cylindrical Coordinates

Cylindrical Coordinates are expressed in radius (r), axis (z) and longitude (¢$) as shown in fig

T(r, ¢, z)

drical coordinates

| heat conduction cylin

rical coordinates is given by

Fig 2-5: Three dimensiona

x . . .
ction equation 1n cylind

Three dimensional heat condu
—[3)

Spherical Coordinates

Spherical coordinates system expressed in (r, ¢, z) is shown in Fig 2-6.
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Fig 2-6 : Three dimensional heat conduction spherical coordinates.

Three dimensional heat conduction equation in spherical coordinates is given by,

192 1 93 3 . -
=2 _(rT) + or 1 9T ¢ 10T --[4
| 7o 36 (0 5 ) ek~ o “

SPECIAL FORMS OF HEAT CONDUCTION EQUATION
From equation (3) of section m 2.3 some special cases of particular interest are as follows.

1. Laplace equation Considering the three dimensional heat conduction equation in Cartesian Co-
ordinates, we have

aT 9°T aqu 19T

T T v A =1
Using Laplacian operator V2, the above equation becomes,
] 19T
2 R P R —2
k o dt =
T
Where V2T = — o 8T+3T
ax? ay’ oz’
If heat generation is absent and the process is steady flow, q =0 and,

°T 9°T  0°T
Nty =
ox° dy” oz
Under these conditions, equation (2) reduces to
VT =0 --- [3]
The above equation is known as Laplace equation.

FIND MORE NOTES @ VTUMECHNOTES.COM NOTES MADE BY ANISH JAIN



2. Poisson's equation In many cases, the temperature at any point in a material doesn' t change with
time,

aT
. ~ =0
ie, =
From equation (2), *
VT + E =0 4]

The above equation i1s known as Poisson equation.

3. Fourier equation

For unsteady state heat transfer with no internal heat generation then equation (2) above reduces
to

19T = /[5]
V2T = ——

o ot

One-dimensional conduction equations in rectangular, cylindrical and spherical
coordinates for plane and composite walls.

RECTANGULAR OR CARTESIAN CO-ORDINATES

Consider a one dimensional system as shown in Fig 2-1. In the steady state system, the temperature
doesn't change with time. If the temperature changes with time the system is known as unsteady
state system. This is the general case where the temperature is not constant

Temperature profile

— i ————Dx "}’l dxl"_

lume
(a) Variation of temperature (b) Elcn'wnlal Vo
Fig 2-1 : One dimensional heat conduction

(qgen) (g x+dex)

FIND MORE NOTES @ VTUMECHNOTES.COM NOTES MADE BY ANISH JAIN



.........

rig &+i . vne uurc

Gpen = Energy
q Adx

Energ,

. aTi
= —kA—
. axjx«h
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dE
dt

I

Change in internal energy

e
™

p = density

where
¢ = specific heat of material

q
Making energy balance for an elemental strip dx,

dE
qn + qh‘u = Z + (I.A..’\

ar . or aT
ie, “KA— + gAdr = pcA—dx - kKA—
x AL Pt Max 4

x+dy

b}
- pcA-a—"rdt *Al:kAQT-}. 9 [k

PR . ox  dx
Writing in differential form

The above equation is known as one dimensional heat conduction equation.

CYLINDRICAL CO-Ordinate’s

q. = Energy conducted in LHS of th

enerated within the elemental strip

y conducted out of the RHS of the element

* = energy generated per unit volume

—[1]

The Cartesian coordinate system discussed above is not applicable to determine heat conduction in
cylinders, cones, spheres etc. When heat conduction takes place through such geometries,
cylindrical co-ordinate systems are used, since co-ordinate surfaces coincide with the boundary
surfaces of the region. . For heat transfer analysis, consider an infinitesimal cylindrical volume

element shown in figure 2.2.
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Fig 2-2 : An element in cylindrical co-ordinate system
The following assumptions are made while deriving the heat conduction equation

e Thermal conductivity k, density p and specific heat C for the material do not change with

position

e Heat generation rate is uniform per unit volume per unit time

From the figure 2.2,
x = rcos9
y = rsin@
¢ = tan” (y/x)
and z = Z , to r we have,
Using chain rule and partially differentiating T with reference
or 9T 0 +3_I§1
5;‘ = 5; or oy or
. aT
= cosf. o +sind5
aT - (1]
" cos g = cos’ ¢ 'g"‘f +sin¢. cos ¢ ay
ave,

ifferentiating T with reference to ¢ we h

aT 9T ox T dy
S ==t
% _ ox 09 dy 90

Similarly partially d

aT
_rg—: sin¢+r5}— cos ¢
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T . aT
sosind -g—: = -rsin’¢ g; +rsin¢.cos @ 5—),—

e
ingoT _ ., dT oT N
or S'Ts‘; = —sin’ ¢ ™ + sin ¢ cos ¢ % [2]
T  sinodT . , 0T .
" sin ¢.cos¢5; = —lr—‘£+5102¢é—’(‘ [3]

‘Substituting (3) in (1) and rearranging,

I _ o T _sine oT - [4]
ox it o r 090
g—; = sin¢ g—;r + Eors_d)g_: - [5]
From (4) and (5),
o°T 8T(8T) sinq)&T(aT)
7 €8¢ —|—[-——| —
dx or \ ox r 0o\ odx
B JT dT sing dT | sin¢ OT dT sin¢ oT
=C0S () — —_———— | — — = e s
or [Cowar r 8¢J aq)[cosd) o r 90
0’T »
ax2 = cos’¢ \I+M dT  sin’¢ 9T
or 2 =+ —
. 9% r or
sin® ¢ 92T :
+ —=2 1 cosd.sing 9T
r? a¢2+T¢-a~¢ --- (6]
0T T ,
wd i °°s¢~[@)-M£ )
or ay r a¢ E
2
= sin? ¢ a“’f+c°L2¢£_°°S¢-Si“¢ 9T cos¢ 9°T
TR T Rt e
_ Cosd.sing 9T
r? ?¢ —[7]
Adding (6) and (7) we have
T 9T 9T 19T 1 a1
—t— = — -y L
x> 9y? 3r2+rar+r2W
FT T  19(dT) 191
o P - :a(‘&)*rzav ~ 18]
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If the heat conduction is unidirectional i.e., along the radial direction r only, the above equation
reduces to
o, 13
7 - rorl ar —
But from equation (1) we have for constant thermal conductivity k,
PT 4 _ pCar - (10)
ox> k ~ kot
Substituting (9) in (10) above,
11(,3_T_)+‘I_ _ pCaT ‘ e (1)
rorl or) Kk k ot

SPHERICAL CO-ORDINATES

Consider an infinitesimal spherical element of volume dV shown in fig. Considering heat conduction
only along the direction r, we can derive heat conduction equation in a single co-ordinate

Q(HJ"

Fig2-3:A spherical co-ordinate system

Considering 6 — ¢ plane; r-direction

. JT -
Heatin, Q, = —k (r dO sin 6 d¢) -a—rdt

3 ]
Heat out, Q“d' = Qr+ 5; (Q,) dr
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Heat storage in the elemental volume due to heat storage in x-direction,

dQ, = Q, - Q:cdl

)
=-—(Q)d v ler
ar Q) dr -3

1 .

- 0 [—k (rd@sin Od¢)zr— &t]dr
or or

kdOsinO0dOdr i[ a—T-}dt
r Jr

K (dr. rdO.r sin 0.do) L— 2 2 9T dt
rdrl  or

1 d9( ,0T 3
kdV ——| 2 & [
e Dr(r or )dl

Heat generated within the contro] volume
= qdva -~ 4]
pate of change of energy within the congro volume

aT
= pCdv —
ot -dt - [5]
For energy balance we have,

Total heat storage in control volume + internal heat generation

= Rate of change of energy within the control volume.
From above equations (3), (4) and (5) we have,

10 ,0T
(v 7 ar( = )dt+qudt =pCdV %Td

la( aT g_ Ca’[‘
o | Zoarll o)k “PC % - [6]

The above equation is one dimensional heat conduction equation in spherical coordinate
along radial direction.

General equation for one dimensionil heat conduction T

The one dimensional heat conduction equation in the Cartesian (rectangular), cylindrical, and
spherical coordinate systems is given by a single general equation as

3 nkg) = ey e [7]
ror or B or
Where n=0 for rectangular coordinates
1 for cylindrical coordinates
2 for spherical coordinates.
"\ -
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Overall heat transfer coefficient.

In many instances it is customary to express the heat flow rate in the cases of single or multi-layered

plane walls and cylinders with convection at the boundaries in terms of an overall conductance or
overall heat transfer coefficient U.

A. PLANE WALL Consider a plane wall exposed to a hot fluid A on one side and a cold fluid B on the
other side. The heat transfer is expressed as

Tah,
s Q
-
Q| T, be
Fluid A A
2

! : ‘ rall heat

») Fig. 3.12 - Ove all b
transfer coeffi e
through a plane wa

KA
Q=hAT,-T) = —L—(T,—Tz) =h,A(T,~T,)

mrusss — s

s -1) (&-%)
_(n-T) _ (T’LT)=(‘T’

ie, Q = 7 - L 2
ha “ v f the above equation,
ominators 0O

Adding the numerators and den 1

e= 1 + b ] + =

h,A kA  h,A
L-% — 0

i.e., Q - Ru + R/ + Rb

The overall heat transfer coefficient due to combined heat transfer by convection and conduction is
given as,
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Q = UAATvval
= A'I;nwnll -—— [3]
1
UA
Comparing equations [1] and [2] with (3],
S 4 + . + I
v - hn k E=R"+RI+Rb
Rearranging, U = 1 _ 1 4]
(L)+£+L R, +R, +R,
h,) k b,

B. HOLLOW CYLINDER

Consider a hollow cylindrical tube with a hot fluid A flowing inside it and a cold fluid B flowing
outside its surface. Let T,, Ty be the corresponding temperatures and hy, h, be the corresponding
heat transfer coefficients. The arrangement with an equivalent electric circuit is shown in Fig. 3-13

4

Fluid A

R, R, R,
Fig. 3.13 : Overall heat transfer coefficient through a cylinder

The heat flow rate is given by,

Q= L1, (5]
GV
hA, 2nkL A,

a’‘a

The above equation can be written based on the inside area A, and outside area A, of the tube
or cylinder.
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---[6
o (6]

Q= ,,
(L+Aaln(rb,ra)+é_;i)_l_

h, 2nkL Ay hy )A,

- =l

Ay 1 An(n/r) 11
A, h, 2nkL  h, A,

The overall heat transfer coefficient due to combined conduction and convectio

or Q=

n is given as,

_ AT:wrrall - A’I:nrmll T [8]
Q== =77
U,A, U, A,
Comparing equations [6] and (7] with [8],
U = -
1 Aln(y/r) A, 1
h, 2nkL A, h,
1
U = --- [9
’ ﬁL+Abln(rb/ra)+L Bl
A, h, 2n kL h,

where V, and V,, are the inside and outside overall heat transfer coefficients based on the respective
inside and outside areas of the cylinder or tube.

Thermal contact resistance

Consider two solid bars brought into contact as shown in Fig. 3-10. The sides of the bars are
insulated so that heat flows only in axial direction. The temperature profile through the solids
experiences a sudden drop across the interface between the two materials. This temperature drop
at the contact plane between the two materials is due to thermal contact resistance.

Consider the enlarged view of the interface as shown in Fig. 3-10.The direct contact between the

solids takes place only between a few spots whereas the gap between the solids is either filled with
air or surrounding fluid. Since radiation effects are negligible at normal temperature and since there
can not be any convection in such a thin layer of the fluid, heat transfer through the fluids filling the
gaps or voids takes place mainly by conduction. Thus two principal contribution to the heat transfer
at the contact surface are

1. The solid to solid conduction at the point of contact

2. The conduction through fluids filling the gaps or voids created by contact
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Fig. 3.10 : Temperature drop across a contact resistance

Part B

Free or Natural Convection: Application of dimensional analysis for free convection-

When the heat transfer takes place by actual motion of the molecules without external assistance
then heat transfer by convection is known as free convection

\ T, (Surface)

(k¢ B.p)
Fluid properties

T, (Fluid)
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The fluid velocity in case of free convection depends upon the following parameters;
1. Temperature difference between solid surface and bulk fluid, AT

2. Acceleration due to gravity, g

The change in the volume when temperature changes can be expressed as
dV = ViA(T,-T)

where

dV - change involume (m*) = V,—V;

B = Coefficient of volumetric expansion of fluid, (m3/m?°C)

T5 - Final temperature (°C)

Ti - Initial temperature (°C)

Therefore , free convection heat transfer coefficient is a function of following variables

Variable Symbol | Dimensions
Fluid density p ML3
Dynamic viscosity I ML IT!
Thermal conductivity k MLT 36!
Specific heat C, L2T 26!
Characteristic length D L
Temperature difference | AT 0

Therefore, convective heat transfer coefficient is expressed as

h = f(p,[_l,, k, Cp, D, AT, ﬂ! g)

However, in free convection, (AT 3 g) will be treated as single parameter as the velocity of fluid particles
is a function of these parameters. Therefore, equation (i) can be expressed as

f(h7 Py s kv Cp) D7 (ATﬂg)) =0
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Convective heat transfer coefficient, h is dependent variable and remaining are independent variables.
Total number of variables,n=7
Number of fundamental units, m =4

According to Buckingham’s t-theorem, number of i-terms is given by the difference of total number of
variables and number of fundamental units.

These non-dimensional m-terms control the forced convection phenomenon and are expressed as,
f(m1,m2,m3) = 0....(7)

Each 7, -term is expressed as:

7 = ukPp°Dh. . (i)

Writing down each term in above equation in terms of fundamental dimensions
MOLOT°® = (ML 1T V)2 (MLT 30 1)° (ML 3)°(L)¢MT 36!
Comparing the powers of M, we get

O=a+b+c+1,

a+b+c=-1

Comparing powers of L, we get

0O=-a+b+c+d

Comparing powers of T, we get

0=—-a—3b—c—3

Comparing powers of 6, we get

b= -1

Substituting the values of ‘a’, ‘b’, ‘c’ and ‘d’ in equation (ii), we get
m = plk1p°Dh

m = hD/K

The second mo-term is expressed as

my = u*k’p°DCp

After following same steps we get

7y = uCp/K = Pr

The third 73 -term is expressed as

3 = uk’ p° D*((ATBg)
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After following same steps, we get
3 = D*(ATBg)/v?
Substituting the values of 71, o, 73 in equation (i), we get
("D uCp Ds(ATﬁg)) i
K’ K v2
hD uCp D*(ATRg)
K o( K’ - )
Nu = ¢(Pr,Gr) as
Gr = D*(ATBg)/v?

The above correlation is generally expressed as,
Nu = C(Pr)*(Gr)®

The constant C and exponents a and b are determined through experiments.

physical significance or Grashoff number;

8. Grashoff Number

Grashoff number is defined as th
square of viscous force.

¢ ratio of product of inertia force and buoyance force to 1,

Inertia force X Buoyance force
(Viscous force)z

r =

" oV’ xpBeATL' _ p’PgATL’ —B
r = =
(wv)’ W

where Vs the velocity of the fluid caused by buoyance force (Bg AD).

use of correlations of free convection in vertical, horizontal and inclined flat plates, vertical and
horizontal cylinders and spheres,
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VERTICAL PLATE
1. Uniform Wall Temperature

For constant wall temperature McAdams correlated the average Nusselt number with following

expression.

Nu_ =c (GrL Pre =

n
cRa,

-]

where

L = The vertical height of the plate

Gr = Grashoff number

- BSLJ(TW "T..)
v
Nu, = Nusselt number
o bl
Tk
Ral_ = GrLPr

The constant ¢ and exponent n are given in table

7-1.

fb" ‘1apie /-1 : Constant ¢ and exponent p,

- Range of Gr, pr

e c ;

| 10* to 10° 1

3 0.59 4

Lam! 4

10° to 10'3 ;

. 0.10 3

Turb¥ 3

two more equations are proposed by Churchilll and
Number

o

0.67Ra}’
[+ 0T

Nu, = 0.68+

other for laminar flow for all values of Prandtl

for 10" <Ra, < 10° ---2)

For both laminar and turbulent flow

0.387Ra’

(10|

Nu, = 0.825+

for 107 < Ra, < 10"---[3)

n all the above equations the physical properties
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2 Uniform Wall Heat Flux
The following correlations are proposed for

the local Nusselt number under uniform wall

—[4)

feat flux .
For laminar flow
N 0.60(Gr, Pr) for 10° < Gr. Pr <10"
ux
For turbulent flow | o
: 2% 107 < Gr, Pr <
Gr Pr )% for
Nu, = 0.568 (GT;
e Gr. — Modified Grashof number
re l

4
X
_ Pean®

Constant wall heat flux

qw =
Nu, = Local Nusselt number
xh,
= b
The average Nusselt number for equations [4] and [5] are given DY )
Nu, = 1.25[Nu]), _, for 10° < Gr, Pr <10
m . xix =
Nu, = 1.136 [Nu,_, for 2 x 107 < Gr; Pr <10’
" . o o
Equation [2] suggested by Churchil and Chu also applies for uniform heat flux conditions. [t
can be expressed in terms of modified Grashof number Gr' by substituting Ra, = Gr; Prand
Gr, = Gr, Nu,. Thus for laminar flow,
1
Y 0.67(Gr;pr)/'
Nu,¢(Nu,, —0.68) = 6]

o 1%
o

HORIZONTAL PLATE

The average Nusselt number for free convection on a horizontal plate depends on whether the plate
surface is warmer or cooler than the surrounding fluid and whether the surface is facing up or down.

1. Uniform Wall Temperature
The empirical relation given by McAdams is expressed as,
Nu, = c (Gr.Pr)"
The constant ¢ and exponent n are listed in table 7-2
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uble 7.2 : Constant ¢ and exponent n for equation n

Wemauon GIL Pr c n Flow regime
” su,f,: facing up 10°to 2 x 107 0.54 % Laminar
ol curface facing down 2x10to3 x 10' 0.14 % Turbulent
/ down

surface facing
Hotsore N 3x10°t03x 10 | 027 7 Laminar

up

(Cold surface facing

ren

In the above equation [ 1]

L ' _ 3
Nu, =t g gy, = P T
" k L v

The characteristic length L of the plate is given by

Surfacearea Plate
L= —
Perimeter
For square plate, L = Length of a side
For rectangular plate, L = Arithmetic mean of two dimensions
For circular disk L = 0.9 times the diameter

2. Uniform Wall Heat flux
For a horizontal plate with the heated surface facing upward

Nu_ = 0.13(Gr,Pr)" | > forGr, Pr<2x 10" 2]
Nu = 0.16(Gr,Pr)/s |- for 5x10°<Gr,Pr<10" [

For the horizontal plate with the heated surface facing downward,

' - [3)
Nu, = 0.58(Gr,Pr)"| for 10°<Cn, Pr< 10"

erature,
The physical properties in equation (2] and [3] are evaluated at a mean temp

T = TW— 0.25 (Tw i T..)
‘ 9 i + T2
The thermal expansion coefficient (B) s evaluated at (T, + T/
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. 7.4-2

lhb e7 For 'l] Iela“ons-
Vi some use! l
. . l -3 an inclin pla

FLOW CONDITION
—/REGIME

RELATION

REMARKS

Heat flux, heated surface
facing downward

! e

Hot

L. Inclined plate with uniform

Nu_= 056(Gr, Prcose)y‘

Note :

L. All physical properties are evaluated at mean
temperature T_ =T, - 0.25 (T, - T_) and B is
evalvated at T_ + 0.25 (T,-T)

2. Angle 0 is considered positive if the hot surface
is facing down.

Average Nusselt number for

free convection from an

inclined plate subject to

approximately uniform wall
flux, valid for + 6 < 88° and
10° < Gr, Pr< 10"

0=

makes with the vertical.

NOTATIONS

Angle which the surface

2. Inclined plate with uniform

heat flux, heated surface
facing upward.

Hot H
-0 .

Nu_ = 0.I4,{(GrL Pr)” =(Gre Pr)y’]

+ 0.56(Grc Preos0)

Where, Gr, is the transition Grashof number dependent
on angle 6 as given in the table below.

Degrees Gr,
-15 5x10°
-30 10°
- 60 10*
-75 10°

Note :

L. All physical properties are evaluated at mean
temperature T_=T_ ~0.25 (T, ~T ) and B is
evaluated at T_+ 0.25 (T, -~ T_)

2. Angle 0 is considered negative if the hot surface is
facing up.

Average Nusselt number for

free convection from an

inclined plate subjected to
approximately uniform wall
flux valid for Gr,Pr < 10",
Gr, >Groand- 15° <0 < -75°

Gr, = Transition Grashof
number which depends on 8

0 = Angle of inclination of the
surface with the vertical.

\ * All physical

d at film

Prop

P T,=0.5 (T, + T) unless otherwise stated.

VERTICAL CYLINDER, If the thickness of the thermal boundary layer is much smaller than the cylinder
radius, then the average Nusselt number for free convection on a vertical cylinder is same as that of

a vertical plate.
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e

o McAdams correlation holds good h

penc®

ere alsoie.,

N“. =c (G"L Pr)" - CRGL"

calues of ¢ and n are given in table 7-3. J, the

e lh‘d’ 10 the height of the cylinder.

S uids having Prandtl number equal to
edasd vertical flat plate when
3l
e L/D
— <0.025 whe
(Gn)

0.7 and

re D is the cylinder diameter.

~(1]

above case the length L of the plate

greater than 0.7, the vertical cylinder may

When the vertical cyh.n.der s subjec!ed fo uniform wall heat flux, the local Nusselt numbers
civen by the same empirical relations used for a vertical plate.
are s :

'7'4'6
HORIZONTAL CYLINDER

Foran isothermal horizontal cylinder, Churchill and Chuhave proposed the following relation,

) %
Nul = 0.60+ 0.387 Ra,, .
Y% |77
0559/ \*
(140559, )]
hD Ty -T1.)D
where Nu, = T;RaD = GryPr = [ﬁg(“T)
Morgan presented the following relation from the horizontal isothermal cylinder,
D
Nu, = hT = cRa,"| for 10" < Ra, < 10"

The values of constant ¢ and exponent n are listed in table 7-3.

3
]Pr

for 10 < Ra,< 10" ---(2)

~13]

Table 7.3
————
Rab c n

\
10-0_ 02 0.675 0.058
10222 1.02 0.148
10~ 10¢ 0.850 0.188
0= 1 0.480 0.250
\“}"_ 102 0.125 0.333
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